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Abstract The relation between the non-adiabatic vibra-
tional correction to the reduced mass, i.e. the vibrational
g-factor, and the electric dipole moment gradient of a
diatomic molecule is investigated. An explicit expression
for the “irreducible” non-adiabatic contribution in terms of
excited electronic states is derived. The importance of this
expression for the analysis of vibration-rotational spectra
of diatomic molecules is discussed and explicit expressions
are presented for the first two fitting parameters in an
expansion of the non-adiabatic vibrational term in an
effective vibration-rotational Hamiltonian. Results of
ab initio multiconfigurational self consistent field calcula-
tions of the non-adiabatic contribution to vibrational
g-factor of hydrides and fluorides of Li, B, Al, Ga and
monoxides of C, Si and Ge are presented and compared
with the corresponding non-adiabatic contributions to the
rotational g-factor.
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1 Introduction

The analysis of infrared spectra of diatomic molecules with
internuclear distance R in an electronic state |¥,) of
symmetry 'Z" is commonly based on an effective vibra-
tion-rotation Hamiltonian H¢ for nuclear motion [1-9]
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in which J(J + 1)7 is the eigenvalue of J, the square of
the total angular momentum operator about the molecular
centre of mass, with rotational quantum number J. The
atomic reduced mass is denoted u = M, Mp/(M, + Mp)
and EGO(R) is the potential energy for nuclear motion
within the Born-Oppenheimer approximation. The terms
V(R) = V*(R) + V™(R), g,(R) and g,(R) are corrections
to the Born-Oppenheimer approximation and take into
account that electrons fail to follow the nuclei perfectly
[1-6, 9, 10]. Whereas V2 consists of expectation values of
various operators within the given electronic state |Vo)
[11-13] and is therefore called an adiabatic correction to
the potential energy, the other three, nonadiabatic, terms
include virtual excitation to other electronic states |¥y).
They represent therefore the effect of the breakdown of
the Born-Oppenheimer approximation [1] and are thus
called Born-Oppenheimer-breakdown (BOB) corrections.
;"T;gV(R) and z—;g,.(R) are non-adiabatic contributions to the
reduced masses of the vibrational and rotational motion of
the nuclei, i.e. they are due to the inertia of the electrons
with respect to the nuclear vibrational and rotational
motion [2].

The expression for the non-adiabatic rotational reduced
mass ;”T;g,(R) is at least similar to the one of the rotational
g-factor [14-21] of molecular beam [22-25] or rotational
Zeeman experiments [26-28], i.e. the dimensionless mag-
netogyric ratio between the rotational magnetic dipole
moment and the angular momentum of molecular rotation,
which was first pointed out by Herman and Asgharian [2].
Measured as well as calculated rotational g-factors can
therefore be utilized in the analysis of vibrational-rotational
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spectra, where calculations have the advantage that radial
functions can easily be generated [29-39].

The same authors noted also that no equivalent simi-
larity exists between the non-adiabatic vibrational reduced
mass "¢, (R) and a low order magnetic effect. Nevertheless
Herman and Ogilvie [9] coined the phrase vibrational g-
factor for g,(R), which for a diatomic molecule AB as a
function of the internuclear distance R is given as [1, 2, 5,
6,9, 36]

& (R) =274 (Ra . — Rem)’

uR2

+ —ZB(RB7 Rem)?

201, 5~ (Po|Pr|W,) (¥, Pr|Wo) 2)

Melt =5 EBO(R) — EBO(R)
where R,z are the position vectors of the nuclei with
atomic numbers Z,,z and atomic masses M,,p, placed along
the z-axis pointing from atom A to B, Rcy is the position
vector of the atomic center of mass and {r;} stands for the
set of position vectors of all electrons in the molecule and
Pr = —lh% is the linear momentum operator of the relative
nuclear motion. |¥o) and E§°(R) are the wavefunction and
energy of the electronic state of interest, whereas |¥,) and
EBO(R) refer to other electronic states of the same total
spin, all for the given internuclear distance R.

Quantum chemical calculations [36, 37, 39] are thus the
only alternative source for the vibrational g-factor to fitting
spectral data using the effective Hamiltonian in Eq. 1 [31,
32, 35, 40-64]. In order to fit spectra of several isotopo-
mers, the radial functions g,.(R) and g,(R) need to be
partitioned into two isotopically invariant contributions [4,
6, 9, 42 ] associated with each nucleus and expanded in a
power series of e.g. the Ogilvie-Tipping z-variable, z = 2
(R — R)I(R + R,) [65, 66],

-(R) —m,,< ZtAz’+—Zth’> (3)

and

1
& (R) = m, (M—A

One should note that t‘g/B is often called (ugp)ap [4, 28]
without giving explicit expressions for it, whereas Watson
[6] has presented explicit expressions for 7% and s5%,
which he called R}, and Q) respectively, in terms of
excited electronic states.

For the case of neutral but polar diatomic molecules it
was shown [9] that the rotational and vibrational g-factors
have in addition to “irreducible” non-adiabatic contribu-

tions, g™ and g, also a contribution from the molecular

. 1 .
57+ M—Bz;sfﬂ> (4)
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electric dipole moment d or the gradient a%d of the
molecular electric dipole moment'

() = (R) - "2 ) (31 51 ©)
(R) = g0 =" 0. (o~ 51 ©)

The interpretation of the “irreducible” non-adiabatic con-
tributions, g™ and g™, however, was stated [9] to be
unclear and no direct derivation had been presented.

In a previous Letter [67], in the following called paper
I, the nature and derivation of the “irreducible” non-
adiabatic rotational contribution was investigated. The
purpose of this work is now to present explicit expres-
sions for gi™! in terms of excited electronic states, to
derive Eq. 6 also for charged molecules and to illustrate
the importance of gh*® with ab initio results for hydrides
and fluorides of Li, B, Al, Ga and monoxides of C, Si and
Ge.

2 Theory

Watson [4, 6] showed that the desired partitioning of the
vibrational g-factor into isotopically invariant contributions
can be achieved with the following isotopically invariant
operators

5 5 Rp; — Rewm, .
PzA _ PR + ( B,z = Z) thz (7)
5 5 Ra; — Rewm, .
PzB:PR‘i‘%ZPi,Z (8)

i
where p;, = —ih5— a is the canonical momentum operator of
electron i and the molecule is placed along the z-axis.

Isotopically invariant contributions to the vibrational
g-factor can thus be defined as [6]

A nmy 2m,, { ) )
g (R) =—Zp+—> 9
®) =t i E§0<R> —eowR)
B my, 2m,, W) (W |Pm|‘PO>
8y (R) = —Z meﬂz EBO EBO(R) (10)
n#0

Primarily these two contributions are just a way of sepera-
ting the mass dependence of the vibrational g-factor.
However, from the expressions for the vibrational g-factor
of an isotopic variant of molecule AB [9] it can be deduced
that g5(R) is actually the vibrational g-factor of an hypo-
thetical isotopical variant where the atom B has zero mass

! The molecule is placed along the z-axis pointing from A to B.
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and therefore only atom A vibrates and correspondingly for
gV (R).

Similar to the derivation of the “irreducible”
adiabatic contribution g™ of the rotational g-factor in
paper I [67], we can derive the desired expression for the
“irreducible” non-adiabatic contribution g™ by relating
Egs. 9 and 10 to Eq. 2 following the derivation of the
relation between the g-factors of two isotopomers [9].
Starting from g4(R) we insert the expression for the iso-
topically invariant operator Pz, Eq. 8, expand the
electronic matrix elements (¥o|P.5|¥,) and replace
Bas_Rows) wigh — Mz — I valid if the z axis points

Ms+Mp My
from atom A to B

A mp
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The second term is the electronic contribution to the
vibrational g-factor, whereas the last three terms can be
rewritten on making use of a hypervirial relation

(vEonlw)
Zfi %>

me [EBO(R) . E,]?O(R)] <\Pn
the orthogonality of the eigenstates [9], which implies that

ih
6 0 6
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and thus

o 0
(ol ) =~ (ae

and a resolution of the identity

Y > (14)

such that

g} (R) = g(R) + IZB

m,
o Ié [ZA (Raz — Rewmz)’ + Zs(Ra, — RCM,Z)Z}
2my, 0 . |0
— M_A<<6_R‘P0 Fiz LI’o><‘1"0 Zri,z 6_R\P0>>
m, L
- l;M‘%<LPO zi:[ri,upi,z] lIIO> (16)

Evaluating the commutator

<‘P0 Z[fi‘u;ﬁi,/i]

i
where N is the total number of electrons, and inserting the
expressions for (R4, — Rem,) and (Rp, — Reum,) gives

\(R) = g (R) + ";(z 7kl zB“Z)

M3 M3
oy 2 > (18)
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As the z-component of a radial function for the electric
dipole moment, calculated with the origin of the coordinate
system at the centre of mass, is given as

dz(RCMa R)
= ¢[Zs(Raz — Remz) + Zs(Rp. — Rew:) |

(19)
- €<‘P0 Z(f”i,z — Remy) LI’o>

i
one rewrites this expression as

\P0> = th(Sa/; (17)
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Finally using that the total charge of the molecule is
eQ =e(Zy + Zg — N), one obtains
2my, 0O

€ (R) = u(R) + S0 . Rews )+ mpQy (21)

and correspondingly for nucleus B
2my, O

B _
g, (R) = g(R) — oMy R

4. (Rem, R) + m,,Q# (22)
B

Adding these two equations yields the desired relation
between the vibrational g-factor and electric dipole
moment gradient
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(23)

which for a neutral molecule (Q = 0) reduces to Eq. 6,

thereby identifying the “irreducible” non-adiabatic
contribution g"*® as

1 m ZA +ZB
e (R) = 5[t () + gl(R)] ="

<1P0|PZA‘1Pn><Tn‘PZA“P0>
pme < EBO(R) — EBO(R)
LM \P0|Pzg\w (¥, |P.5|¥o)
EBO EBO(R)

24
e 2 (24)

Other useful relations for analysis of vibration-rotational
spectra can be obtained from Egs. 9 and 10 for neutral
molecules (Q = 0). Subtraction of Egs. 9 and 10 (or (21)
and (22)) gives the z-component of the radial function for
the electric dipole moment gradient

idZ(RCM,R) — R (R) - ¢%(R)]

OR 2m,, (25)

whereas addition of Eqs. 9 and 10 (or (21 and 22))
weighted by the quotient of the reduced mass and the mass
of the other nucleus yields the partitioning of the
vibrational g-factor [9],

Hey(R) . ney(R)
»(R z 26
(k) - 10 el (26)

Comparison of Eq. 26 and Eq. 4 shows that
m .
= 7” Z sfz’ (27)
j=0

(28)

PR ="y s
,Ll j:0

The fitting parameters 5{} and s8 of a neutral molecule Q
= 0) can thus be calculated directly from Eqgs. 9 and 10

sy = HoBR
mpgv( e)
_ 7, 4 25 (HolPua | ¥0) (2P Fo) 29)
me i EO(R) — EX°(R)
B U
= — Re
SO mp v( )
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—Zp (30)
me i EGO(R) — E°(R)
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which shows that s§ and s5 are independent of mass and
thus of the isotopomers. Higher fitting parameters sf " with
j > 0, which describe the dependence of the non-adiabatic
vibrational term on the internuclear distance, can be
obtained from numerical derivatives of gﬁ/B(R) in Egs. 9

and 10, with respect to the internuclear distance R.

3 Applications

In order to investigate the importance of and trends in the
“irreducible” non-adiabatic contribution to the vibrational

g factor 2>, we have carried out ab initio calculations of
gt gf gnd and g, for the hydrides and fluorides of Li, B

Al, Ga and the monoxides of C, Si and Ge, i.e. the same set
of molecules as in paper I [67]. Calculations were made
using self-consistent field (SCF) and multiconfigurational
self-consistent field (MCSCF) linear response functions
[68]. In the limit of a complete one-electron basis set
Eq. 26 is fulfilled exactly for the SCF and MCSCEF linear
response functions, whereas this would not be the case for
response functions based on perturbation theory through
finite order, such as the second order polarization propa-
gator approximation (SOPPA) [69-71] or the second order
polarization propagator approximation with coupled cluster
singles and doubles amplitudes—SOPPA(CCSD) [71, 72],
or even Coupled Cluster response functions [73]. The
disagreement between the SCF or MCSCEF results for g,
calculated from Eq. 2 and Eq. 26 is therefore due to the
incompleteness of the one-electron basis set. Large basis
sets, especially optimized for calculation of rotational
g-factors or magnetizabilities [32, 34, 67, 74], have been
used for all molecules. Details of basis sets and internu-
clear distances for these calculations can be found in
Table 1 of paper I [67]. All calculations were carried out
with a development version of the DALTON program
package [75, 36]. The MCSCF wavefunctions were of the
complete active space (CAS) type [76] with the valence
s- and p-orbitals included in the active space. Details of the
active spaces are also shown in Table 1 of paper I [67]. The
MCSCF calculations were started from the MP2 natural
orbitals [77, 78] calculated with the inactive orbitals of the
MCSCEF calculation kept frozen.

The SCF and MCSCEF results for g, in Table 1 calcu-
lated from the partitioned form, Eq. 26 and directly, Eq. 2,
agree very well with each other. The differences are very
small but increase slightly from B to Ga and from C to Ge.
Only for AIH and AIF we observe slightly large deviations
as was already found for the rotational g-factors in paper I
[67] indicating that the aluminum basis set is of slightly
lower quality than the other basis sets. Furthermore the
deviations are virtually identical at the SCF and MCSCF
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Table 1 Comparison of calculated values of the “irreducible” non-adiabatic contribution g, its contributions g2, g%, the total vibrational g-

factor g, and the “irreducible” non-adiabatic contribution g™

as well as total rotational g-factor g, for selected diatomic molecules

AB Method g & o g g g
Eq. 9 Eq. 10 Eq. 24 Eq. 26 Eq. 2 [67] [67]
Li'H SCF —0.3090 0.8064 0.2487 —0.1689 —0.1697 —0.0224 —0.6962
MCSCF —0.2536 0.7149 0.2307 —0.1320 —0.1328 —0.0046 —0.6613
"Li"F SCF —0.1800 0.1889 0.0044 0.0894 0.0890 —0.0034 0.0729
MCSCF —0.1724 0.1834 0.0055 0.0875 0.0871 —0.0055 0.0691
"B'H SCF —0.5323 0.8503 0.1590 —0.4164 —0.4168 —8.5414 —8.2756
MCSCF —0.4054 0.8398 0.2172 —0.3010 —0.3015 —6.1391 —5.9365
TAl'H SCF —0.5358 1.4171 0.4406 —0.4655 —0.4689 —3.4294 —3.4654
MCSCF —0.3809 1.2877 0.4534 —0.3208 —0.3243 —3.0453 —3.0977
%Ga'H SCF —0.5825 1.6213 0.5194 —0.5507 —0.5531 —3.1811 —3.2452
MCSCF —0.4463 1.4842 0.5190 —0.4184 —0.4208 —2.8809 —2.9541
NBI°F SCF —0.1902 0.1487 —0.0207 0.0244 0.0241 —0.2278 —0.2339
MCSCF —0.1701 0.1409 —0.0146 0.0268 0.0265 —0.2224 —0.2258
AR SCF —0.0950 0.1405 0.0228 0.0023 0.0002 —0.0783 —0.0839
MCSCF —0.0851 0.1340 0.0244 0.0054 0.0033 —0.0772 —0.0823
Ga'°F SCF —0.0795 0.1344 0.0275 —0.0332 —0.0351 —0.0485 —0.0620
MCSCF —0.0722 0.1290 0.0284 —0.0287 —0.0305 —0.0484 —0.0605
12¢%0 SCF —0.1533 0.1489 —0.0022 0.0193 0.0191 —0.2805 —0.2800
MCSCF —0.0698 0.1145 0.0223 0.0355 0.0352 —0.2559 —0.2577
2si'°0 SCF —0.0896 0.1364 0.0234 —0.0074 —0.0079 —0.1374 —0.1522
MCSCF —0.0452 0.0882 0.0215 0.0033 0.0027 —0.1298 —0.1413
74Ge'®0 SCF —0.0707 0.1394 0.0343 —0.0333 —0.0350 —0.1155 —0.1454
MCSCF —0.0301 0.1002 0.0351 —0.0069 —0.0085 —0.1046 —0.1272
4 Experimental or experimentally derived values: Li'H g = —(0.654 £ 0.007) (molecular beam and magnetic resonance) [79],

—0.65842 + 0.00017 (molecular beam and electric resonance) [80]; TLi"F g = (0.0642 £ 0.0004) (molecular beam and magnetic resonance)
[81], (0.07367 £ 0.00050) (molecular beam and magnetic resonance) [82]; 2TAl'H g, = —2.25 £+ 0.25 (fitting of IR spectra) [40], —2.7 &+ 0.5
(fitting of IR spectra) [31]; ’Al'F g, = —0.08051 =+ 0.0008 (microwave rotational Zeeman effect) [83]; ®Ga'"F g, = —0.06012 =+ 0.00012
(microwave rotational Zeeman effect) [84]; 2C'°0O g- = (0.26910 £ 0.0005) (microwave rotational Zeeman effect) [10], (0.267 + 0.003)
(microwaverotational Zeeman effect) [85], —0.26890 % 0.00010 (molecular beam and magnetic resonance) [86], —0.26895 £ 0.00005 (mo-
lecularbeam and electric resonance) [87], —0.262 4+ 0.026 (magnetic vibrational circular dichroism) [88]; 28si1°0 g- = —0.15359 + 0.00012

(molecularbeam and electric resonance) [89]; 74Ge'®0 g =
—0.14089 4 0.00010 (molecular beam and electric resonance) [89]

level which supports the claim that the basis sets are close
to completeness for the properties studied here.

The active spaces in the valence CAS MCSCF calcu-
lations presented in Table 1 are not large enough to allow a
final statement about the effects of electron correlation on
the vibrational g-factor. This is beyond the scope of this
article. Nevertheless one should note that electron corre-
lation increases the  “irreducible”  non-adiabatic
contribution, gi*?, for the majority of molecules studied
here apart from LiH, GaH and SiO, but becomes less
important in absolute and percentage terms with increasing
atomic number within one group of the periodic table. The
total vibrational g-factor is also increased by inclusion of
electron correlation with the sole exception of LiF, similar
to the total rotational g-factor of the same molecules.
However, no uniform trend can be observed with respect to

—0.141369 + 0.000151 (microwave rotational Zeeman effect) [90],

the importance of electron correlation for the total vibra-
tional g-factor.

Comparing now g-* and g, for the various molecules at
the MCSCEF level reveals interesting trends. The vibrational
g-factor as well as its “irreducible” non-adiabatic contri-
bution gh* is for all the atoms X studied here larger in the
hydrides XH than in the fluorides XF as was previously
also observed for the rotational g-factor [67]. However,
ghad increases within a group of the periodic table, which is
not always the case for the total vibrational g-factor,
whereas g™ and g, decrease within a group.

With the exception of LiH, the absolute value of the
“irreducible” non-adiabatic contribution to the vibrational
g-factor, g™, is smaller than the corresponding contribu-
tion to the rotational g-factor, g™ In the case of the group

13 hydrides, BH, AIH and GaH, this is not a surprise
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because they exhibit unusually large non-adiabatic rota-
tional contributions and thus rotational g-factors which is
related to their known temperature independent paramag-
netism or near paramagnetism (see e.g. [30, 31, 33, 34,
74, 91-98] and references therein). BH is actually para-
magnetic and the perpendicular component of the
magnetizability of AIH also shows paramagnetism.

Concerning the sign of the “irreducible” non-adiabatic
contribution to the vibrational g-factor, gﬂad, we observe
that it is positive for the molecules studied here with the
single exception of BF, whereas g™ is negative for all our
molecules. Furthermore and also contrary to gmd we
observe that gh*® has for the majority of the studied systems
the opposite sign of the total vibrational g-factor, whereas
it has the same sign for LiF, AlF, CO and SiO.

In case of the rotational g-factor we could see that the
non-adiabatic contribution was the dominant contribution
for all of the studied molecules, but LiH and LiF, where the
electric dipole moment contribution was the major contri-
bution. In the case of the vibrational g-factor the situation
is more complicated. For all our hydrides as well as BF and
GaF, the contribution from the electric dipole moment
gradient has the opposite sign of g*® and is approximately
twice as large. In the case of AlIF, CO, SiO and GeO the
dipole moment gradient and the “irreducible” non-adia-
batic contributions have also opposite signs, but the latter is
now larger. Finally for LiF both contributions are positive,
but the electric dipole moment gradient contribution is at
least 15 times larger.
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